Flowering plant

Flowering plants
Fossil range: Early Cretaceous — Recent
Magnolia virginiana
Sweet Bay
Scientific classification
Kingdom: Plantae
Division: Angiospermae
Lindley[1] [P.D. Cantino & M.J. Donoghue][2]
Clades

Amborellaceae
Nymphaeales
Austrobaileyales
Mesangiospermae

Synonyms

Anthophyta
Magnoliophyta Cronquist, Takht. & W.Zimm., 1966

The flowering plants (angiosperms), also known as Angiospermae or Magnoliophyta, are the most diverse group of land plants. Together with gymnosperms, they are the only extant groups of seed-producing plants, but they can be distinguished from the gymnosperms by a series of synapomorphies (derived characteristics). These characteristics include flowers, endosperm within the seeds, and the production of fruits that contain the seeds.

The ancestors of flowering plants diverged from gymnosperms around 245–202 million years ago, and the first flowering plants known to exist are from 140 million years ago. They diversified enormously during the Lower Cretaceous and became widespread around 100 million years ago, but replaced conifers as the dominant trees only around 60-100 million years ago.

Contents

Angiosperm derived characteristics

The flowers, which are the reproductive organs of flowering plants, are the most remarkable feature distinguishing them from other seed plants. Flowers aid angiosperms by enabling a wider range of adaptability and broadening the ecological niches open to them. This has allowed flowering plants to largely dominate terrestrial ecosystems.

Stamens are much lighter than the corresponding organs of gymnosperms and have contributed to the diversification of angiosperms through time with adaptations to specialized pollination syndromes, such as particular pollinators. Stamens have also become modified through time to prevent self-fertilization, which has permitted further diversification, allowing angiosperms eventually to fill more niches.

The male gametophyte in angiosperms is significantly reduced in size compared to those of gymnosperm seed plants. The smaller pollen decreases the time from pollination — the pollen grain reaching the female plant — to fertilization of the ovary; in gymnosperms fertilization can occur up to a year after pollination, while in angiosperms the fertilization begins very soon after pollination. The shorter time leads to angiosperm plants setting seeds sooner and faster than gymnosperms, which is a distinct evolutionary advantage.

The closed carpel of angiosperms also allows adaptations to specialized pollination syndromes and controls. This helps to prevent self-fertilization, thereby maintaining increased diversity. Once the ovary is fertilized, the carpel and some surrounding tissues develop into a fruit. This fruit often serves as an attractant to seed-dispersing animals. The resulting cooperative relationship presents another advantage to angiosperms in the process of dispersal.

The reduced female gametophyte, like the reduced male gametophyte, may be an adaptation allowing for more rapid seed set, eventually leading to such flowering plant adaptations as annual herbaceous life cycles, allowing the flowering plants to fill even more niches.

Endosperm formation generally begins after fertilization and before the first division of the zygote. Endosperm is a highly nutritive tissue that can provide food for the developing embryo, the cotyledons, and sometimes for the seedling when it first appears.

These distinguishing characteristics taken together have made the angiosperms the most diverse and numerous land plants and the most commercially important group to humans. The major exception to the dominance of terrestrial ecosystems by flowering plants is the coniferous forest.

Evolution

Flowers of Malus sylvestris (crab apple)

Land plants have existed for about 425 million years.[3] Early land plants reproduced sexually with flagellated, swimming sperm, like the green algae from which they evolved. An adaptation to terrestrialization was the development of upright meiosporangia for dispersal by spores to new habitats. This feature is lacking in the descendants of their nearest algal relatives, the Charophycean green algae. A later terrestrial adaptation took place with retention of the delicate, avascular sexual stage, the gametophyte, within the tissues of the vascular sporophyte. This occurred by spore germination within sporangia rather than spore release, as in non-seed plants. A current example of how this might have happened can be seen in the precocious spore germination in Sellaginella, the spike-moss. The result for the ancestors of angiosperms was enclosing them in a case, the seed. The first seed bearing plants, like the ginkgo, and conifers (such as pines and firs), did not produce flowers. Interestingly, the pollen grains (males) of Ginkgo and cycads produce a pair of flagellated, mobile sperm cells that "swim" down the developing pollen tube to the female and her eggs.

The apparently sudden appearance of relatively modern flowers in the fossil record posed such a problem for the theory of evolution that it was called an "abominable mystery" by Charles Darwin.[4] However, the fossil record has grown since the time of Darwin, and recently discovered angiosperm fossils such as Archaefructus, along with further discoveries of fossil gymnosperms, suggest how angiosperm characteristics may have been acquired in a series of steps. Several groups of extinct gymnosperms, particularly seed ferns, have been proposed as the ancestors of flowering plants but there is no continuous fossil evidence showing exactly how flowers evolved. Some older fossils, such as the upper Triassic Sanmiguelia, have been suggested. Based on current evidence, some propose that the ancestors of the angiosperms diverged from an unknown group of gymnosperms during the late Triassic (245–202 million years ago). A close relationship between angiosperms and gnetophytes, proposed on the basis of morphological evidence, has more recently been disputed on the basis of molecular evidence that suggest gnetophytes are instead more closely related to other gymnosperms.

The earliest known macrofossil confidently identified as an angiosperm, Archaefructus liaoningensis, is dated to about 125 million years BP (the Cretaceous period),[5] while pollen considered to be of angiosperm origin takes the fossil record back to about 130 million years BP. However, one study has suggested that the early-middle Jurassic plant Schmeissneria, traditionally considered a type of ginkgo, may be the earliest known angiosperm, or at least a close relative.[6] Additionally, circumstantial chemical evidence for the existence of angiosperms as early as 250 million years ago. Oleanane, a secondary metabolite produced by many flowering plants, has been found in Permian deposits of that age together with fossils of gigantopterids.[7][8] Gigantopterids are a group of extinct seed plants that share many morphological traits with flowering plants, although they are not known to have been flowering plants themselves.

Recent DNA analysis based on molecular systematics [9][10] showed that Amborella trichopoda, found on the Pacific island of New Caledonia, belongs to a sister group of the other flowering plants, and morphological studies [11] suggest that it has features that may have been characteristic of the earliest flowering plants.

The great angiosperm radiation, when a great diversity of angiosperms appears in the fossil record, occurred in the mid-Cretaceous (approximately 100 million years ago). However, a study in 2007 estimated that the division of the five most recent (the genus Ceratophyllum, the family Chloranthaceae, the eudicots, the magnoliids, and the monocots) of the eight main groups occurred around 140 million years ago.[12] By the late Cretaceous, angiosperms appear to have dominated environments formerly occupied by ferns and cycadophytes, but large canopy-forming trees replaced conifers as the dominant trees only close to the end of the Cretaceous 65 millions years ago or even later, at the beginning of the Tertiary.[13] The radiation of herbaceous angiosperm occurred much later.[14] Yet, many fossil plants recognizable as belonging to modern families (including beech, oak, maple, and magnolia) appeared already at late Cretaceous.

Two bees on a flower head of Creeping Thistle, Cirsium arvense

It is generally assumed that the function of flowers, from the start, was to involve mobile animals in their reproduction processes. That is, pollen can be scattered even if the flower is not brightly colored or oddly shaped in a way that attracts animals; however, by expending the energy required to create such traits, angiosperms can enlist the aid of animals and thus reproduce more efficiently.

Island genetics provides one proposed explanation for the sudden, fully developed appearance of flowering plants. Island genetics is believed to be a common source of speciation in general, especially when it comes to radical adaptations that seem to have required inferior transitional forms. Flowering plants may have evolved in an isolated setting like an island or island chain, where the plants bearing them were able to develop a highly specialized relationship with some specific animal (a wasp, for example). Such a relationship, with a hypothetical wasp carrying pollen from one plant to another much the way fig wasps do today, could result in both the plant(s) and their partners developing a high degree of specialization. Note that the wasp example is not incidental; bees, which apparently evolved specifically due to mutualistic plant relationships, are descended from wasps.

Animals are also involved in the distribution of seeds. Fruit, which is formed by the enlargement of flower parts, is frequently a seed-dispersal tool that attracts animals to eat or otherwise disturb it, incidentally scattering the seeds it contains (see frugivory). While many such mutualistic relationships remain too fragile to survive competition and spread widely, flowering proved to be an unusually effective means of reproduction, spreading (whatever its origin) to become the dominant form of land plant life.

Flower ontogeny uses a combination of genes normally responsible for forming new shoots.[15] The most primitive flowers are thought to have had a variable number of flower parts, often separate from (but in contact with) each other. The flowers would have tended to grow in a spiral pattern, to be bisexual (in plants, this means both male and female parts on the same flower), and to be dominated by the ovary (female part). As flowers grew more advanced, some variations developed parts fused together, with a much more specific number and design, and with either specific sexes per flower or plant, or at least "ovary inferior".

Flower evolution continues to the present day; modern flowers have been so profoundly influenced by humans that some of them cannot be pollinated in nature. Many modern, domesticated flowers used to be simple weeds, which only sprouted when the ground was disturbed. Some of them tended to grow with human crops, perhaps already having symbiotic companion plant relationships with them, and the prettiest did not get plucked because of their beauty, developing a dependence upon and special adaptation to human affection.[16]

Classification

Angiospermae

Amborella




Nymphaeales




Austrobaileyales



Mesangiospermae


magnoliids



Chloranthales





monocots




Ceratophyllum



eudicots









The phylogeny of the flowering plants, as of APG III (2009).

There are eight groups of living angiosperms:

The exact relationship between these eight groups is not yet clear, although it has been determined that the first three groups to diverge from the ancestral angiosperm were Amborellales, Nymphaeales, and Austrobaileyales.[18] The term basal angiosperms refers to these three groups. The five other groups form the clade Mesangiospermae, with the Chloranthales and Magnoliidae forming the basal mesangiosperms. Ceratophyllum seems to group with the eudicots rather than with the monocots.

History of classification

From 1736, an illustration of Linnaean classification.

The botanical term "Angiosperm", from the Ancient Greek αγγείον, angeíon (receptacle, vessel) and σπέρμα, (seed), was coined in the form Angiospermae by Paul Hermann in 1690, as the name of that one of his primary divisions of the plant kingdom. This included flowering plants possessing seeds enclosed in capsules, distinguished from his Gymnospermae, or flowering plants with achenial or schizo-carpic fruits, the whole fruit or each of its pieces being here regarded as a seed and naked. The term and its antonym were maintained by Carolus Linnaeus with the same sense, but with restricted application, in the names of the orders of his class Didynamia. Its use with any approach to its modern scope only became possible after 1827, when Robert Brown established the existence of truly naked ovules in the Cycadeae and Coniferae, and applied to them the name Gymnosperms. From that time onwards, so long as these Gymnosperms were, as was usual, reckoned as dicotyledonous flowering plants, the term Angiosperm was used antithetically by botanical writers, with varying scope, as a group-name for other dicotyledonous plants.

Auxanometer: Device for measuring increase or rate of growth in plants.

In 1851, Hofmeister discovered the changes occurring in the embryo-sac of flowering plants, and determined the correct relationships of these to the Cryptogamia. This fixed the position of Gymnosperms as a class distinct from Dicotyledons, and the term Angiosperm then gradually came to be accepted as the suitable designation for the whole of the flowering plants other than Gymnosperms, including the classes of Dicotyledons and Monocotyledons. This is the sense in which the term is used today.

In most taxonomies, the flowering plants are treated as a coherent group. The most popular descriptive name has been Angiospermae (Angiosperms), with Anthophyta ("flowering plants") a second choice. These names are not linked to any rank. The Wettstein system and the Engler system use the name Angiospermae, at the assigned rank of subdivision. The Reveal system treated flowering plants as subdivision Magnoliophytina (Frohne & U. Jensen ex Reveal, Phytologia 79: 70 1996), but later split it to Magnoliopsida, Liliopsida and Rosopsida. The Takhtajan system and Cronquist system treat this group at the rank of division, leading to the name Magnoliophyta (from the family name Magnoliaceae). The Dahlgren system and Thorne system (1992) treat this group at the rank of class, leading to the name Magnoliopsida. However, the APG system, of 1998, and the APG II system, of 2003[19], do not treat it as a formal taxon but rather treat it as a clade without a formal botanical name and use the name angiosperms for this clade.

The internal classification of this group has undergone considerable revision. The Cronquist system, proposed by Arthur Cronquist in 1968 and published in its full form in 1981, is still widely used but is no longer believed to accurately reflect phylogeny. A consensus about how the flowering plants should be arranged has recently begun to emerge through the work of the Angiosperm Phylogeny Group (APG), which published an influential reclassification of the angiosperms in 1998. An update incorporating more recent research was published as APG II[19] in 2003.

Monocot (left) and dicot seedlings

Traditionally, the flowering plants are divided into two groups, which in the Cronquist system are called Magnoliopsida (at the rank of class, formed from the family name Magnoliacae) and Liliopsida (at the rank of class, formed from the family name Liliaceae). Other descriptive names allowed by Article 16 of the ICBN include Dicotyledones or Dicotyledoneae, and Monocotyledones or Monocotyledoneae, which have a long history of use. In English a member of either group may be called a dicotyledon (plural dicotyledons) and monocotyledon (plural monocotyledons), or abbreviated, as dicot (plural dicots) and monocot (plural monocots). These names derive from the observation that the dicots most often have two cotyledons, or embryonic leaves, within each seed. The monocots usually have only one, but the rule is not absolute either way. From a diagnostic point of view the number of cotyledons is neither a particularly handy nor reliable character.

Recent studies, as by the APG, show that the monocots form a monophyletic group (clade) but that the dicots do not (they are paraphyletic). Nevertheless, the majority of dicot species do form a monophyletic group, called the eudicots or tricolpates. Most of the remaining dicot species belong to a third major clade known as the Magnoliidae, containing about 9,000 species, while the few hundred other species make up a paraphyletic collection of families known as the basal angiosperms.

Flowering plant diversity

Various flower colors and shapes

The number of species of flowering plants is estimated to be in the range of 250,000 to 400,000. [20] [21] [22] The number of families in APG (1998) was 462. In APG II[19] (2003) it is not settled; at maximum it is 457, but within this number there are 55 optional segregates, so that the minimum number of families in this system is 402. In APG III (2009) there are 415 families.

The diversity of flowering plants is not evenly distributed. Nearly all species belong to the eudicot (75%), monocot (23%) and magnoliid (2%) clades. The remaining 5 clades contain a little over 250 species in total, i.e., less than 0.1% of flowering plant diversity, divided among 9 families.

The most diverse families of flowering plants, in their APG circumscriptions, in order of number of species, are:

  1. Asteraceae or Compositae (daisy family): 23,600 species[23]
  2. Orchidaceae (orchid family): 22,075 species[23]
  3. Fabaceae or Leguminosae (pea family): 19,400[23]
  4. Rubiaceae (madder family): 13,150[24]
  5. Poaceae or Gramineae (grass family): 10,035[23]
  6. Lamiaceae or Labiatae (mint family): 7,173[23]
  7. Euphorbiaceae (spurge family): 5,735[23]
  8. Melastomataceae (melastome family): 5,005[23]
  9. Myrtaceae (myrtle family): 4,620[23]
  10. Apocynaceae (dogbane family): 4,555[23]

In the list above (showing only the 10 largest families), the Orchidaceae and Poaceae are monocot families; the others are eudicot families.

Vascular anatomy

Cross-section of a stem of the angiosperm flax:
1. Pith,
2. Protoxylem,
3. Xylem I,
4. Phloem I,
5. Sclerenchyma (bast fibre),
6. Cortex,
7. Epidermis

The amount and complexity of tissue-formation in flowering plants exceeds that of gymnosperms. The vascular bundles of the stem are arranged such that the xylem and phloem form concentric rings.

In the dicotyledons, the bundles in the very young stem are arranged in an open ring, separating a central pith from an outer cortex. In each bundle, separating the xylem and phloem, is a layer of meristem or active formative tissue known as cambium. By the formation of a layer of cambium between the bundles (interfascicular cambium) a complete ring is formed, and a regular periodical increase in thickness results from the development of xylem on the inside and phloem on the outside. The soft phloem becomes crushed, but the hard wood persists and forms the bulk of the stem and branches of the woody perennial. Owing to differences in the character of the elements produced at the beginning and end of the season, the wood is marked out in transverse section into concentric rings, one for each season of growth, called annual rings.

Among the monocotyledons, the bundles are more numerous in the young stem and are scattered through the ground tissue. They contain no cambium and once formed the stem increases in diameter only in exceptional cases.

The flower, fruit, and seed

Flowers

A collection of flowers forming an inflorescence.

The characteristic feature of angiosperms is the flower. Flowers show remarkable variation in form and elaboration, and provide the most trustworthy external characteristics for establishing relationships among angiosperm species. The function of the flower is to ensure fertilization of the ovule and development of fruit containing seeds. The floral apparatus may arise terminally on a shoot or from the axil of a leaf (where the petiole attaches to the stem). Occasionally, as in violets, a flower arises singly in the axil of an ordinary foliage-leaf. More typically, the flower-bearing portion of the plant is sharply distinguished from the foliage-bearing or vegetative portion, and forms a more or less elaborate branch-system called an inflorescence.

The reproductive cells produced by flowers are of two kinds. Microspores, which will divide to become pollen grains, are the "male" cells and are borne in the stamens (or microsporophylls). The "female" cells called megaspores, which will divide to become the egg-cell (megagametogenesis), are contained in the ovule and enclosed in the carpel (or megasporophyll).

The flower may consist only of these parts, as in willow, where each flower comprises only a few stamens or two carpels. Usually other structures are present and serve to protect the sporophylls and to form an envelope attractive to pollinators. The individual members of these surrounding structures are known as sepals and petals (or tepals in flowers such as Magnolia where sepals and petals are not distinguishable from each other). The outer series (calyx of sepals) is usually green and leaf-like, and functions to protect the rest of the flower, especially the bud. The inner series (corolla of petals) is generally white or brightly colored, and is more delicate in structure. It functions to attract insect or bird pollinators. Attraction is effected by color, scent, and nectar, which may be secreted in some part of the flower. The characteristics that attract pollinators account for the popularity of flowers and flowering plants among humans.

While the majority of flowers are perfect or hermaphrodite (having both male and female parts in the same flower structure), flowering plants have developed numerous morphological and physiological mechanisms to reduce or prevent self-fertilization. Heteromorphic flowers have short carpels and long stamens, or vice versa, so animal pollinators cannot easily transfer pollen to the pistil (receptive part of the carpel). Homomorphic flowers may employ a biochemical (physiological) mechanism called self-incompatibility to discriminate between self- and non-self pollen grains. In other species, the male and female parts are morphologically separated, developing on different flowers.

Fertilization and embryogenesis

Angiosperm life cycle

Double fertilization refers to a process in which two sperm cells fertilize cells in the ovary. This process begins when a pollen grain adheres to the stigma of the pistil (female reproductive structure), germinates, and grows a long pollen tube. While this pollen tube is growing, a haploid generative cell travels down the tube behind the tube nucleus. The generative cell divides by mitosis to produce two haploid (n) sperm cells. As the pollen tube grows, it makes its way from the stigma, down the style and into the ovary. Here the pollen tube reaches the micropyle of the ovule and digests its way into one of the synergids, releasing its contents (which include the sperm cells). The synergid that the cells were released into degenerates and one sperm makes its way to fertilize the egg cell, producing a diploid (2n) zygote. The second sperm cell fuses with both central cell nuclei, producing a triploid (3n) cell. As the zygote develops into an embryo, the triploid cell develops into the endosperm, which serves as the embryo's food supply. The ovary now will develop into fruit and the ovule will develop into seed.

Fruit and seed

The fruit of the Aesculus or Horse Chestnut tree.

As the development of embryo and endosperm proceeds within the embryo-sac, the sac wall enlarges and combines with the nucellus (which is likewise enlarging) and the integument to form the seed-coat. The ovary wall develops to form the fruit or pericarp, whose form is closely associated with the manner of distribution of the seed.

Frequently the influence of fertilization is felt beyond the ovary, and other parts of the flower take part in the formation of the fruit, e.g. the floral receptacle in the apple, strawberry and others.

The character of the seed-coat bears a definite relation to that of the fruit. They protect the embryo and aid in dissemination; they may also directly promote germination. Among plants with indehiscent fruits, the fruit generally provides protection for the embryo and secures dissemination. In this case, the seed-coat is only slightly developed. If the fruit is dehiscent and the seed is exposed, the seed-coat is generally well developed, and must discharge the functions otherwise executed by the fruit.

Economic importance

Agriculture is almost entirely dependent on angiosperms, either directly or indirectly through livestock feed. Of all the families plants, the Poaceae, or grass family, is by far the most important, providing the bulk of all feedstocks (rice, corn — maize, wheat, barley, rye, oats, pearl millet, sugar cane, sorghum). The Fabaceae, or legume family, comes in second place. Also of high importance are the Solanaceae, or nightshade family (potatoes, tomatoes, and peppers, among others), the Cucurbitaceae, or gourd family (also including pumpkins and melons), the Brassicaceae, or mustard plant family (including rapeseed and the innumerable varieties of the cabbage species Brassica oleracea), and the Apiaceae, or parsley family. Many of our fruits come from the Rutaceae, or rue family, and the Rosaceae, or rose family (including apples, pears, cherries, apricots, plums, etc.).

In some parts of the world, certain single species assume paramount importance because of their variety of uses, for example the coconut (Cocos nucifera) on Pacific atolls, and the olive (Olea europaea) in the Mediterranean region.

Flowering plants also provide economic resources in the form of wood, paper, fiber (cotton, flax, and hemp, among others), medicines (digitalis, camphor), decorative and landscaping plants, and many other uses. The main area in which they are surpassed by other plants is timber production.

See also

References

  1. Lindley, J (1830). Introduction to the Natural System of Botany. London: Longman, Rees, Orme, Brown, and Green. xxxvi. 
  2. Cantino, Philip D.; James A. Doyle, Sean W. Graham, Walter S. Judd, Richard G. Olmstead, Douglas E. Soltis, Pamela S. Soltis, & Michael J. Donoghue (2007). "Towards a phylogenetic nomenclature of Tracheophyta". Taxon 56 (3): E1–E44. 
  3. Lindley, D (2000). "The role of mid-palaeozoic mesofossils in the detection of early bryophytes". Philos Trans R Soc Lond B Biol Sci 355 (1398): 733–755.. doi:10.1098/rstb.2000.0613. PMID 10905607. PMC 1692787. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1692787. 
  4. Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences of the United States of America. T. Jonathan Davies, Timothy G. Barraclough, Mark W. Chase, Pamela S. Soltis, Douglas E. Soltis, and Vincent Savolainen. Published (online) February 6, 2004.
  5. Sun, G., Q. Ji, D.L. Dilcher, S. Zheng, K.C. Nixon & X. Wang 2002. Archaefructaceae, a New Basal Angiosperm Family. Science 296(5569): 899–904.
  6. Xin Wing; Shuying Duan, Baoyin Geng, Jinzhong Cui and Yong Yang (2007). "Schmeissneria: A missing link to angiosperms?". BMC Evolutionary Biology 7: 14. doi:10.1186/1471-2148-7-14. PMID 17284326. 
  7. . doi:10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2+.  | title = Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils | journal = Paleobiology | pages = 179–190 | volume = 32 | issue = 2 | date = March 2006 | year = 2006 | DUPLICATE DATA: doi = 10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2 | author1 = David Winship Taylor | author2 = Hongqi Li | author3 = Jeremy Dahl | author4 = Fred J. Fago | author5 = David Zinniker | author6 = and J. Michael Moldowan | author-separator = , }}
  8. Oily Fossils Provide Clues To The Evolution Of Flowers — ScienceDaily (Apr. 5, 2001)
  9. NOVA — Transcripts — First Flower — PBS Airdate: April 17, 2007
  10. Amborella not a "basal angiosperm"? Not so fast -- Soltis and Soltis 91 (6): 997 -- American Journal of Botany
  11. South Pacific plant may be missing link in evolution of flowering plants — Public release date: 17-May-2006
  12. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms- Communicated by David L. Dilcher, University of Florida, Gainesville, FL, August 28, 2007 (received for review June 15, 2007) — PNAS
  13. David Sadava; H. Craig Heller; Gordon H. Orians; William K. Purves, David M. Hillis (December 2006). Life: the science of biology. Macmillan. pp. 477–. ISBN 9780716776741. http://books.google.com/books?id=1m0_FLEjd-cC&pg=PA477. Retrieved 4 August 2010. 
  14. Wilson Nichols Stewart & Gar W. Rothwell‏, Paleobotany and the evolution of plants, 2nd ed., Cambridge Univ. Press 1993, p. 498
  15. Age-Old Question On Evolution Of Flowers Answered — 15-Jun-2001
  16. Human Affection Altered Evolution of Flowers — By Robert Roy Britt, LiveScience Senior Writer (posted: 26 May 2005 06:53 am ET)
  17. 17.0 17.1 17.2 17.3 17.4 17.5 Jeffrey D. Palmer, Douglas E. Soltis and Mark W. Chase, Chase, M. W. (2004). Figure 2. "The plant tree of life: an overview and some points of view". American Journal of Botany 91: 1437–1445. doi:10.3732/ajb.91.10.1437. http://www.amjbot.org/cgi/content/full/91/10/1437/F2. 
  18. Pamela S. Soltis and Douglas E. Soltis (2004). "The origin and diversification of angiosperms". American Journal of Botany 91: 1614–1626. doi:10.3732/ajb.91.10.1614. http://www.amjbot.org/cgi/content/full/91/10/1614. 
  19. 19.0 19.1 19.2 Angiosperm Phylogeny Group (2003). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II". Botanical Journal of the Linnean Society 141: 399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x. http://www.blackwell-synergy.com/links/doi/10.1046/j.1095-8339.2003.t01-1-00158.x/full/. 
  20. Thorne, R. F. (2002). "How many species of seed plants are there?". Taxon 51 (3): 511–522. doi:10.2307/1554864. http://www.ingentaconnect.com/content//iapt/tax/2002/00000051/00000003/art00009. >
  21. Scotland, R. W. & Wortley, A. H. (2003). "How many species of seed plants are there?". Taxon 52 (1): 101–104. doi:10.2307/3647306. http://www.ingentaconnect.com/content/iapt/tax/2003/00000052/00000001/art00011. 
  22. Govaerts, R.url=http://www.ingentaconnect.com/content/iapt/tax/2003/00000052/00000003/art00016+(2003). "How many species of seed plants are there? — a response". Taxon 52 (3): 583–584. doi:10.2307/3647457. http://jstor.org/stable/3647457. 
  23. 23.0 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 Stevens, P.F. (2001 onwards). "Angiosperm Phylogeny Website (at Missouri Botanical Garden)". http://www.mobot.org/MOBOT/Research/APweb/welcome.html. 
  24. "Kew Scientist 30 (October2006)". http://www.kew.org/kewscientist/ks_30.pdf. 

External links

 This article incorporates text from a publication now in the public domainChisholm, Hugh, ed (1911). Encyclopædia Britannica (Eleventh ed.). Cambridge University Press.